Datasheet ADUM1233 (Analog Devices) - 9

FabricanteAnalog Devices
DescripciónIsolated, Precision Half-Bridge Driver, 0.1 A Output
Páginas / Página12 / 9 — Data Sheet. ADuM1233. APPLICATIONS INFORMATION COMMON-MODE TRANSIENT …
RevisiónC
Formato / tamaño de archivoPDF / 214 Kb
Idioma del documentoInglés

Data Sheet. ADuM1233. APPLICATIONS INFORMATION COMMON-MODE TRANSIENT IMMUNITY. 300. 250. s) µ. BEST-CASE PROCESS VARIATION. 200. (k Y

Data Sheet ADuM1233 APPLICATIONS INFORMATION COMMON-MODE TRANSIENT IMMUNITY 300 250 s) µ BEST-CASE PROCESS VARIATION 200 (k Y

Línea de modelo para esta hoja de datos

Versión de texto del documento

link to page 10 link to page 10 link to page 9 link to page 5 link to page 5 link to page 9 link to page 9 link to page 5
Data Sheet ADuM1233 APPLICATIONS INFORMATION COMMON-MODE TRANSIENT IMMUNITY
The transient magnitude of the sinusoidal component is given by In general, common-mode transients consist of linear and dVCM/dt = 2πf V0 sinusoidal components. The linear component of a common- The ability of the ADuM1233 to operate correctly in the presence mode transient is given by of sinusoidal transients is characterized by the data in Figure 10 VCM, linear = (ΔV/Δt) t and Figure 11. The data is based on design simulation and is the where ΔV/Δt is the slope of the transient shown in Figure 12 maximum sinusoidal transient magnitude (2πf V0) that the and Figure 13. ADuM1233 can tolerate without an operational error. Values for immunity against sinusoidal transients are not included in The transient of the linear component is given by Table 6 because measurements to obtain such values have not dVCM/dt = ΔV/Δt been possible. The ability of the ADuM1233 to operate correctly in the
300
presence of linear transients is characterized by the data in Figure 9. The data is based on design simulation and is the
250
maximum linear transient magnitude that the ADuM1233 can
s) µ BEST-CASE PROCESS VARIATION V/
tolerate without an operational error. This data shows a higher
200 (k Y
level of robustness than what is listed in Table 6 because the
T UNI
transient immunity values obtained in Table 6 use measured
M 150 M
data and apply allowances for measurement error and margin.
I NT IE 100 400 RANS 350 T 50 BEST-CASE PROCESS VARIATION s) 300 µ WORST-CASE PROCESS VARIATION V/ 0
012
0 250 500 750 1000 1250 1500 1750 2000 (k Y 250 T FREQUENCY (MHz)
06271-
UNI
Figure 10. Transient Immunity (Sinusoidal Transients),
M 200 M
27°C Ambient Temperature
I NT 150 250 IE WORST-CASE PROCESS VARIATION 100 RANS T 200 50 s) /µ kV BEST-CASE PROCESS VARIATION
1
0 (
1 0
–40 –20 0 20 40 60 80 100 Y T 150 TEMPERATURE (°C)
06271-
UNI
Figure 9. Transient Immunity (Linear Transients) vs. Temperature
M M I 100
The sinusoidal component (at a given frequency) is given by
NT IE
VCM, sinusoidal = V0sin(2πft)
RANS T 50
where: V
WORST-CASE PROCESS VARIATION
0 is the magnitude of the sinusoidal.
0
f is the frequency of the sinusoidal. 013
0 250 500 750 1000 1250 1500 1750 2000 FREQUENCY (MHz)
06271- Figure 11. Transient Immunity (Sinusoidal Transients), 100°C Ambient Temperature Rev. C | Page 9 of 12 Document Outline Features Applications General Description Functional Block Diagram Table of Contents Revision History Specifications Electrical Characteristics Package Characteristics Regulatory Information Insulation and Safety-Related Specifications DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics Recommended Operating Conditions Absolute Maximum Ratings ESD Caution Pin Configuration and Function Descriptions Typical Perfomance Characteristics Applications Information Common-Mode Transient Immunity Outline Dimensions Ordering Guide